
S.Y.B.Sc (DATA SCIENCE) 2025-26

	Semester III Subjects	Credits		Semester IV Subjects	Credits
Major BDD301	Data warehousing and Mining	2	Major BDB401	Big Data	2
BDS302	Data structure and Algorithm using Python Programming	2	BDA402	Artificial Intelligence	2
BDDP303	Data warehousing and Mining Practical	2	BDBP403	Big Data Practical	2
BDSP304	Data structure and Algorithm using Python Programming Practical	2	BDAP404	Artificial Intelligence Practical	2
Minor BDR305 BDRP306	Research Methodology	2	Minor BDT405	Testing of Hypothesis	2
DDIG 500	Research Methodology Practical.	2	BDTP406	Testing of Hypothesis Practical	2
OE BDL307 BDF307 BDE307	Linear Algebra Fundamental of Stock Market. Econometrics-I	2	OE BDN407 BDM407 BDE407	Numerical Methods Basics of Marketing Econometrics-II	2
VSC BDW308 BDO308	Web Technology Operating System	2	SEC BDS408 BDC408	Search Engine Optimization Computer Graphics	2
AEC BDH309/BD M309	Hindi/Marathi	2	AEC BDH409/BD M409	Hindi/Marathi	2
FP BDFP310	FP	2	CEP BDCP410	CEP	2
CC BDN311/BD Y311	NSS/ Sports/ Cultural/ Yoga	2	CC BDN411/BDY 411	NSS/ Sports/ Cultural/ Yoga	2
	Total	22			22

Programme Name: S.Y.B.Sc(Da	ta Science)	Semester:IV			
Course Category: Major					
Name of the Dept: Science and	Name of the Dept: Science and Technology				
Course Title: Big Data					
Course Code: BDB401	Course Level: 5.0				
Type: Theory					
Course Credit: 02					
Hours Allotted: 30 Hours					
Marks Allotted: 50 Marks					
C 01: 4:	·				

Course Objectives:

- 1. Overview of an exciting growing field of big data analytics
- 2. To provide a sound understanding of Big Data Processing Systems, platforms, management, Big Data Replay on Multicore

Course Outcomes:

After the completion of the course, the learners would be able to:

CO1: To introduce the tools required to manage and analyze big data like Hadoop, NoSql MapReduce.

CO2: To teach the fundamental techniques and principles in achieving big data analytics with scalability, streaming capability and Big Data Replay on Multicore.

Description the course:	Introduction, relevance, Usefulness,	
	Application, interest, connection with other courses, demand in the industry, job prospects etc.	

Unit No.	Content	Hours
I	Big Data Science: Introduction and Historical Interpretation of Big	15
	Data, From 3Vs to 3 ² Vs, Big Data Analytics and Machine Learning,	
	Big Data Analytics and Cloud Computing, Hadoop, HDFS,	
	MapReduce, Spark, and Flink	
	Real-Time Analytics: Computing Abstractions for Real-Time	
	Analytics, Real-Time Processing for Big Data, Data Stream	
	Processing Platforms, Data Stream Analytics Platforms, Data	
	Analysis and Analytic Techniques, Finance Domain Requirements	
	Database Techniques for Big Data: Background, NoSQL	
	Movement, NoSQL Solutions for Big Data Management, NoSQL	
	Data Models	
II	Resource Management, Big Data Processing Systems and	15
	Platforms, Single-Resource Management in the Cloud, Multi	
	resource Management in the Cloud, Related Work on Resource	
	Management.	
	Local Resource Consumption Shaping: A Case for MapReduce:	
	Local Resource Shaper, Evaluation	
	System Optimization for Big Data Processing: Basic Framework of	
	the Hadoop Ecosystem, Parallel Computation Framework:	
	MapReduce, Job Scheduling of Hadoop, Performance Optimization	
	of HDFS and HBase.	
	Packing Algorithms for Big Data Replay on Multicore:	
	Performance Bottlenecks, The Replay Method, Packing Algorithms	
	Total Hours	30

Books and References:

- 1. Big Data Principles and Paradigms, Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi, Publisher: Morgan Kaufmann
- 2. Big Data: Principles and best practices of scalable real-time data systems By Nathan Marz and James Warren Publisher: Manning Publications
- 3. Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph By David Loshin Publisher: Morgan Kaufmann

Programme Name: SY B.Sc.	Data Science	Semester: IV		
Course Category: Major				
Name of the Dept: Science a	nd technology			
Course Title: Artificial Inte	Course Title: Artificial Intelligence			
Course Code: BDA402	Course Level: 5.0			
Type: Theory				
Course Credit: 2	Total Marks: 50 Marks			
Hours Allotted: 30				

Course Objectives:

- 1. Comprehensive understanding of intelligent systems, AI problem-solving techniques, search algorithms, and the development of intelligent agents using various search methods and reasoning strategies.
- 2. To explore uncertainty reasoning, probabilistic models like Bayesian networks, and machine learning techniques, including supervised learning, decision trees, neural networks, and deep learning for solving real-world problems

Course Outcomes:

CO1: Students will be able to design and implement intelligent agents, apply various search techniques, and formulate AI problems effectively to solve complex challenges using both uninformed and informed search strategies.

CO2: Students will be able to effectively apply uncertainty reasoning and advanced machine learning techniques, including probabilistic models, decision trees, neural networks, and deep learning, to solve complex real-world problems.

Description the course:	This course introduces the fundamentals of		
	Artificial Intelligence (AI), focusing on		
	intelligent agents, problem-solving		
	techniques, and search algorithms. It covers		
	uninformed and informed search methods,		
	uncertainty reasoning using Bayesian		
	networks, and key machine learning concepts		
	like decision trees, neural networks, and		
	support vector machines. Students will learn		
	to apply these techniques in real-world AI		
	applications. The course emphasizes both		
	theoretical understanding and		
	practical implementation.		

Unit No.	Content	Hours
I	Intelligent Systems and Intelligent Agents: Introduction to AI, AI Problems and AI techniques, Solving problems by searching, Problem Formulation. State Space Representation Structure of Intelligent agents, Types of Agents, Agent Environments PEAS representation for an Agent. Searching Techniques: Uninformed Search: DFS, BFS, Uniform cost search, Depth Limited Search, Iterative Deepening. Informed Search: Heuristic functions, Hill Climbing, Simulated Annealing, Best First Search, A*	15
II	Uncertainity and Reasoning: Uncertainly, Representing Knowledge in an Uncertain Domain, Bayesian Network, Conditional Probability, Joint Probability, Bayes' theorem, Belief Networks Machine Learning: Forms of Learning, Supervised Learning, Learning Decision Trees, Evaluating and Choosing the Best Hypothesis, Theory of Learning, Regression and Classification with Linear Models, Artificial Neural Networks, Support Vector Machines, Introduction to deep learning.	15
	Total Hours	30

References:

Sr.	Title	Author	Publisher	Edition	Year
No					
1.	Artificial Intelligence: A	Stuart J. Russell	Pearson	Fourth	2020
	Modern Approach	and Peter Norvig		Edition	
2.	Artificial Intelligence:	David L Poole,	Cambridge	Second	
	Foundations of	Alan K.	University	Edition	
	Computational Agents	Mackworth	Press		

Programme Name: S.Y.B.Sc(Data Science)	Semester:IV			
Course Category: Major				
Name of the Dept: Science and Technology				
Course Title: Big data Practical				
Course Code: BDBP403 Co	ourse Level: 5.0			
Type: Practical				
Course Credit: 02				
Hours Allotted: 60 Hours				
Marks Allotted: 50 Marks				
Course Objectives:				
1. Learners must understand tools required	l to manage and analyze big data like			
Hadoop, NoSQL, MapReduce.				
2. Understanding of techniques and princi	2. Understanding of techniques and principles in achieving big data analytics with			
scalability and streaming capability.				
Course Outcomes:				
After the completion of the course, the learners	would be able to:			
CO1: To introduce the tools required to manag	e and analyze big data like Hadoop,			
NoSQL, MapReduce.				
CO2: To teach the fundamental techniques and principles in achieving big data analytics				
with scalability and streaming capability.				
Description the course:	Introduction, relevance, Usefulness,			
	Application, interest, connection with			
	other courses, demand in the industry, job			
	prospects etc.			

	List of Practical's	Hours
1	a. Install, configure and run Hadoop and HDFS	
	b. Implement word count/ frequency program using MapReduce Hadoop/R	
2	Implement an Mapreduce program that process a weather dataset	
3	Exploring Hadoop Distributed File System (HDFS)	
4	Implement an application that store big data in Hbase/ Mongodb/ Pig using Hadoop/R	
5	Implement a program in Pig	
6	Configure the Hive and implement the application in Hive	
7	Illustrate the working of Jaql	
8	a. Implement Decision tree classification techniqueb. Implement SVM Classification technique	
9	Regression Model:	
	a. Import a data from web storage. Name the dataset and do	
	Logistic Regression to find out relation between variables	
	that are affecting the admission of a student in an institute	
	based on his or her GRE score, GPA obtained and rank of	
	the student. Also check the model is fit or not require	
	(foreign), require (Mass)	
	b. b MULTIPLE REGRESSION MODEL: Apply multiple	
	regressions, if data have a continuous independent variable.	
	Apply on above dataset.	
10	CLASSIFICATION MODEL: a. Install relevant package for	
	classification. b. Choose classifier for classification problem. c.	
	Evaluate the performance of classifier.	
	CLUSTERING MODEL a. Clustering algorithms for unsupervised	
	classification. b. Plot the cluster data using R visualizations.	
	Total Hours	60

Books and References:

- 1. VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing House.
- 2. Bart Baesens, Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (Wiley and SAS Business Series), Wiley

Programme Name: S.Y. B.Sc (Data Science)	Semester: IV		
Course Category: Major				
Name of the Dept: Science and	l Technology			
Course Title: Artificial Intellig	gence Practical			
Course Code: BDAP404	Course Level: 5.0			
Course Credit: 02	Total Marks: 50			
Type- Practical				
Hours Allotted: 60 Hrs				

Course Objectives:

- 1. To teach students how to implement search algorithms and AI techniques to solve problems like the Water Jug Problem, N-Queen, and machine learning tasks such as decision trees and classification.
- 2. To provide practical experience in applying AI algorithms and creating PL/SQL triggers and packages for efficient problem-solving and database management.

Course Outcomes: Learners will be able to,

CO1: Students will gain hands-on experience in implementing and applying both uninformed and informed search algorithms, including Depth First Search, Breadth First Search, Hill Climbing, Simulated Annealing, and A*, to solve real-world problems like the Water Jug Problem, Number Puzzle, and N-Queens.

CO2: Students will acquire the skills to implement machine learning algorithms such as linear regression and classification, along with decision tree models for both binary and multi-class classification tasks, enabling them to tackle complex data-driven problems effectively.

\sim	T	4 •
Course	LIACCET	ntion•
Course	DUSCII	puon.

This course focuses on advanced AI techniques and algorithms, emphasizing search strategies, problem-solving, and decision-making. Students will learn and implement both uninformed and informed search algorithms like DFS, BFS, Hill Climbing, and A*. The course also covers machine learning techniques, including linear regression, classification, and decision trees, along with game theory concepts like Alpha-Beta pruning. Practical applications include solving classic AI problems like the N-Queens, map coloring, and the water jug problem. By the end, students will be equipped with the tools to apply AI in real-world scenarios and optimization problems.

1 Generate the state-space possibilities for the following problems a. Water jug problem b. Number puzzle 2 Write the program to compute the following Uninformed Search Algorithms for suitable problem a. Depth First Search b. Breadth First Search d. Breadth First Search b. Breadth First Search 3 Write the program to compute the following Informed Search Algorithms for suitable problem a. Hill Climbing b. Simulated Annealing c. A* algorithm 4 Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring 5 Write the program to compute the following Search Algorithms for suitable problem	
b. Number puzzle Write the program to compute the following Uninformed Search Algorithms for suitable problem a. Depth First Search b. Breadth First Search Write the program to compute the following Informed Search Algorithms for suitable problem a. Hill Climbing b. Simulated Annealing c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
Write the program to compute the following Uninformed Search Algorithms for suitable problem a. Depth First Search b. Breadth First Search Write the program to compute the following Informed Search Algorithms for suitable problem a. Hill Climbing b. Simulated Annealing c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
Search Algorithms for suitable problem a. Depth First Search b. Breadth First Search Write the program to compute the following Informed Search Algorithms for suitable problem a. Hill Climbing b. Simulated Annealing c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
a. Depth First Search b. Breadth First Search Write the program to compute the following Informed Search Algorithms for suitable problem a. Hill Climbing b. Simulated Annealing c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
b. Breadth First Search Write the program to compute the following Informed Search Algorithms for suitable problem a. Hill Climbing b. Simulated Annealing c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
Write the program to compute the following Informed Search Algorithms for suitable problem a. Hill Climbing b. Simulated Annealing c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
Algorithms for suitable problem a. Hill Climbing b. Simulated Annealing c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
a. Hill Climbing b. Simulated Annealing c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
b. Simulated Annealing c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
c. A* algorithm Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
Write the program to compute the following Algorithms for suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
suitable problem a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
a. Simulate solution for 4-Queen / N-Queen problem b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
b. Constraint satisfaction problem: Map Coloring Write the program to compute the following Search Algorithms for suitable problem	
Write the program to compute the following Search Algorithms for suitable problem	
for suitable problem	
a. Alpha Beta Pruning	
b. Water jug problem	
Write the program to compute the following Algorithms for	
suitable problem	
a. Simple Inferencing	
Write the program to compute the following Algorithms for suitable	
problem	
a. Linear Regression	
b. Classification problem	
8 Write the program to implement decision tree for suitable	
problem.	
a. Two Class decision	
b. Multi Class decision	
Total Hours	60

Programme Name: S.Y.B.Sc(Data Scie	ence) Semester:IV
Course Category: Minor	
Name of the Dept: Science & Technolo	ogy
Course Title: Testing of Hypothesis	
Course Code: BDT405	Course Level: 5.0
Type: Theory	
Course Credit: 02	
Hours Allotted: 30 Hours	
Marks Allotted: 50 Marks	

Course Objectives:

- 1. Understand the Fundamentals of Data Collection Process
- 2. Develop Skills to Formulate Research Problems and apply scientific process to test it

Course Outcomes:

After the completion of the course, the learners would be able to:

CO 1: Ability to Critical Thinking and apply analytical tools to interpret results effectively. CO 2: Ability to critically evaluate existing research, assess evidence, and make data-driven decisions.

Description the course:	Hypothesis testing are crucial for data analysts. Accurate data collection ensures reliable insights, while hypothesis testing helps validate assumptions with statistical evidence. This process supports data-driven decisions, reduces bias, and quantifies uncertainty. By combining clean data and rigorous analysis, data analysts provide businesses with trusted recommendations, driving smarter strategies and improving overall decision-making effectiveness in competitive
	making effectiveness in competitive environments.

Unit No.	Content	Hours
I	Introduction to Hypothesis Testing: Hypothesis Tests, Stating a Hypothesis, Types of Errors and Level of Significance, Statistical Tests and P-Values, Making a Decision and Interpreting the Decision, Strategies for Hypothesis Testing, Characteristics of a good hypothesis, Steps for hypothesis testing Hypothesis Testing for the Mean (σ Known): Using P-Values to Make Decisions, Using P-Values for a z-Test, Rejection Regions and Critical Values, Using Rejection Regions for a z-Test, Critical Values in a t- Distribution, The t-Test for a Mean μ, Using P-Values with t-Tests, Sums and case studies Goodness of fit tests: Anderson-Darling, Chi-square test, Kolmogorov-Smirnov, Ryan-Joiner, Shapiro-Wilk, Jarque-Bera, Lilliefors Variance tests: Chi-square test of a single variance, F-tests of two variances, Tests of homogeneity Wilcoxon rank-sum/Mann-Whitney U test, Sign test Contingency tables: Chi-square contingency table test, G contingency table test, Fisher's exact test, Measures of association, McNemar's test	15
II	Analysis of variance and covariance: ANOVA, Single factor or oneway ANOVA, Two factor or two-way and higher-way ANOVA, MANOVA, ANCOVA Non-Parametric ANOVA: Kruskal-Wallis ANOVA, Friedman ANOVA test, Mood's Median Regression and smoothing: Least squares, Ridge regression, Simple and multiple linear regression, Polynomial regression, Generalized Linear Models (GLIM), Logistic regression for proportion data, Poisson regression for count data, Non-linear regression, Smoothing and Generalized Additive Models (GAM), Geographically weighted regression (GWR), Spatial series and spatial autoregression-SAR models, CAR models, Spatial filtering models Time series analysis and temporal autoregression: Moving averages, Trend Analysis, ARMA and ARIMA (Box-Jenkins) models, Spectral analysis	15
	Total Hours	30

Books and References:

Sr.	Title	Author/s	Publisher	Edition	Yea
No					r
1.	Hypothesis Testing		Pearson		
			Higher		
			Education		
2.	Statistical Analysis	Dr. Michael J de	The	2018	2018
	Handbook	Smith	Winchelsea	Ed	
			Press,		
			Drumlin		
			Security		
			Ltd,		
3.	An Introduction to	R. Lyman Ott&	Thomson		
	Statistical Methods	Michael	Learning		
	and Data Analysis	Longnecker			
4.	Research Methodology –	C. R. Kothari	New Age		
	Methods and techniques		International		
			(P) Ltd.,		
			Publishers		

Thane (W)

Programme Name: S.Y.B.Sc(Data Science)	Semester:IV	
Course Category/Vertical: Minor		
Name of the Dept: Science and Technology		
Course Title: Testing of Hypothesis Practical		
Course Code: BDTP406 Course Level: 5.0		
Type: Practical		
Course Credit: 2		
Hours Allotted: 60 Hours		
Marks Allotted: 50 Marks		

Course Objectives:

- 1. To enable students to apply hypothesis testing techniques using real-life and sample data.
- 2. To develop the ability to formulate null and alternative hypotheses for different statistical problems.
- 3. To enhance skills in using statistical tables and software tools (like Excel, R, SPSS, Python, etc.) for hypothesis testing.
- 4. To cultivate the ability to interpret test results and draw meaningful conclusions for decision-making.
- 5. To promote problem-solving and **critical thinking through data-driven experiments** in hypothesis testing.

Course Outcomes:

CO1: Formulate null and alternative hypotheses for different statistical problems and Apply appropriate hypothesis testing methods (Z-test, t-test, Chi-square test, F-test, ANOVA) to real-life data.

CO2: Use statistical tools/software (Excel, R, SPSS, Python, etc.) for performing hypothesis tests and Interpret the results of hypothesis testing and draw valid statistical inferences.

CO3: Demonstrate critical thinking and analytical ability in solving practical data-driven problems.

Description the course:

The course provides hands-on experience in applying the concepts of hypothesis testing to real-life datasets. It focuses on formulating null and alternative hypotheses, selecting suitable statistical tests, and interpreting results for informed decision-making. Students will conduct experiments using **Z-test**, **t-test**, **Chi-square test**, **F-test**, **and ANOVA**, and gain exposure to **statistical software tools** such as Excel, R, SPSS, or Python. The practical sessions emphasize understanding the role of significance levels, p-values, and types of errors (Type I & Type II), thereby strengthening analytical and critical thinking skills. By the end of the course, learners will be able to practically validate statistical assumptions and apply hypothesis testing techniques in academic, research, and industry contexts.

Unit No.	Content	Hours
1	Hypothesis Testing for the Mean	
a.	Perform testing of hypothesis using one sample t-test.	
b.	Perform testing of hypothesis using two sample t-test	-
c.	Perform testing of hypothesis using paired t-test.	
d.	Perform testing of hypothesis using Z-test.	
2.	Goodness-of-fit test	
a.	Perform goodness-of-fit test using chi-squared test.	
b.	Perform goodness-of-fit test using KS-test.	
c.	Perform testing of hypothesis using chi-squared Test of Independence	
3.	Variance Testing	
a.	Using Chi-square test of a single variance	
b.	Using F-tests of two variances	
c.	Testing of homogeneity	
4.	Analysis of variance and covariance	
a.	Perform testing of hypothesis using one-way ANOVA.	
b.	Perform testing of hypothesis using two-way ANOVA.	
c.	Perform testing of hypothesis using one-way ANOVA.	
5.	Regression	
a.	Perform simple linear regression	
b.	Perform multiple linear regression	
c.	Perform polynomial regression	
6.	Perform spatial series and spatial auto-regression	
7.	Perform time series analysis using Moving averages	
8.	Perform time series analysis using Trend Analysis	
9.	Perform Spectral analysis	
10.	Creating —Infographics using secondary data available on internet. (Use Canva /Adobe Spark / Prezi / Vennage	
Note- Pra	ctical can be performed using R / Python / scilab / matlab / SPSS / MS Excel	l

Programme Name: S.Y. B.Sc	(Data Science)	Semester: IV
Course Category: Open Elect	ives	
Name of the Dept: Science and technology		
Course Title: Numerical Methods		
Course Code: BDN407	Course Level:	5.0
Type: Theory		
Course Credit: 02	Total Marks: 50	
Hours Allotted: 30 Hrs		
Course Objectives:		
1. To be able to precisely solv	e problems using mathema	tical modeling & find solution for
a solvable to unsolvable prob	lems.	
2. To find an answer or soluti	on close to answer, withou	t even knowing what the answer is
Course Outcomes: Learners	will be able to,	
CO 1: understand the numeric	al technique to find the roc	ts of non linear equation &
difference operator with use of		
CO2: Understand the numeric		
	A a a Data	Coionas atradant Isamina namanisal

Description the course:

As a Data Science student, learning numerical methods gives you a strong foundation in mathematical modeling and computational approaches, which are useful in a variety of fields and occupations.

Unit No.	Content	Hours
I	Introduction: Errors and Approximations, Iterative Methods, Truncation error, Taylor's series. Numerical Solution of Equations of a Single Variable: Numerical Solution of Equations, Bisection Method, Regular Falsi Method, Fixed Point Method, Newton's raphson Method, Secant Method Numerical Solution of Systems of Equations: Linear Systems of Equations, Numerical Solution of Linear Systems, Gauss Elimination Method. Interpolation: forward difference, Backward difference, Newton's forward difference interpolation, Newton's Backward difference Interpolation, Polynomial Regression, and Polynomial Interpolation.	15
II	Numerical Differentiation and Integration: Numerical Differentiation, Numerical Integration: Trapezoidal, Simpson 1/3 rd rule, Simpsons 3/8 th rule. Numerical solution of 1 st & 2 nd Order differential equation: Euler's method, Modified Euler's method, Runge-katta method for 1 st and 2 nd order differential equation	15
	Total Hours	30

Books and References:

Sr.No	Title	Authors	Publisher	Edition	Year
1	Numerical Methods for Engineers and Scientists Using MATLAB	Ramin S. Esfandiar	CRC Press	2 nd	2017
2	Introductory Methods of Numerical Method	S. S. Sastry	PHI	5 th	2012
3.	Numerical methods	T Veerarajun T Ramachadran	Tata Mc Graw Hill	7 th	2011

Programme Name: S.Y. B.Sc. (Data Science) Semester: IV			
Course Category/Vertical: Open Elective			
Name of the Dept: B.Com (Management Studies)			
Course Title: Basics of Marketing			
Course Code: BDM407	Course Level: 5.0		
Type: Theory			
Course Credit: 02			
Hours Allotted: 30 Hours			
Marks Allotted: 50 Marks			
Course Objectives:			

- 1. To make learners aware of the basic concepts of marketing
- 2. Make learners aware about the importance of marketing research

Course Outcomes:

CO1. Gain knowledge about the concepts of marketing and its implications in the business CO2. Understand the importance of marketing research and its contribution in analysing the market and decision making

Description the course:	The course introduces the learners to the concept of
Description the course:	The course introduces the learners to the concept of marketing and its practical application in the current competitive world. The learners could upgrade their current understanding of marketing and get themselves ready for the workforce. Students would be able to explore new areas of marketing, such as executive MIS, marketing research, and much more, which are in high demand right now in the business world.

Unit No.	Content	Hours
I	Introduction to Marketing	15
	Introduction to Marketing : Definition, features, advantages and scope of marketing. The 4P's and 4C's of marketing. Marketing v/s Selling, functions of marketing	
	Concepts of Marketing: Needs, wants and demands, transactions, transfer and exchanges	
	Orientations of a firm: Production concept; Product concept;	
	selling concept and marketing concept, social relationship, Holistic marketing	
II	Marketing Environment, Research and Consumer Behaviour	15
	The micro environment of business: Management structure; Marketing Channels; Markets in which a firm operates; competitors and stakeholders. Macro environment: Political Factors; Economic Factors; Socio-Cultural Factors, Technological Factors (PEST Analysis) Marketing research: Meaning, features, Importance of marketing research. Types of marketing research: Product research; Sales research; consumer/customer research; production research MIS: Meaning, features and Importance Consumer Behaviour: Meaning, feature, importance, factors affecting Consumer Behaviour	
	Total Hours	30

References:

- **1.** Saxena, Rajan. Marketing Management. Fourth edition, Tata McGraw Hill Publishing Co., New Delhi
- **2.** Ramaswamy V.S. and Namakumari S. Marketing Management Planning, Implementation and Control. Fourth edition, Macmillan
- 3. Kumar Arun & N Meenakshi. Marketing Management. Second Edition; Vikas Publications
- **4.** Michael Vaz Manan Prakashan
- **5.** Kale Vipul Publication

Semester: IV
Course Level: 5.0

Course Objectives:

- 1. To provide students with a basic understanding of different types of distributions.
- 2. To understand the basic regression concepts, including the purpose, assumptions, and types of regression models.

Course Outcomes:

- CO1. Students will learn the different distribution functions to help analyze.
- CO2. Students will be able to understand various techniques of regression analysis.

Description the course:	The objective of this course is to impart a basic		
	understanding of econometrics. The student		
	will be able to appreciate the theoretical basis		
	of the subject. At the same time, it will enhance		
	the student's ability to apply the theoretical		
	techniques to the problems of the real world.		
	Topics like forecasting have been introduced		
	to impart this practical orientation		

Unit No.	Content	Hours
Ι	MODULE I: Statistical Inference	15
	Point and interval estimation	
	• The Z distribution	
	• The Null and Alternate hypotheses and significance testing for mean using Z distribution when population variance is known	
	• The chi-square distribution and testing for sample variance with known population variance	
	• The F distribution and comparing sample variances	
	• The t distribution and hypothesis tests when population variance in unknown	
II	UNIT - II: Regression Analysis	15
	Two variable regression model	13
	• The concept of the PRF	
	Classical assumptions of regression	
	• Derivation of the OLS estimators and their variance	
	• Properties of OLS estimators under classical assumptions, Gauss- Markov Theorem (without proof)	
	• Tests of Hypothesis, confidence intervals for OLS estimators	
	• Measures of goodness of fit: R square and its limitations, adjusted R square and its limitations	
	Total Hours	30

References:

- 1. Gujarati Damodar: Basic Econometrics,
- 2. Hatekar Neeraj (2009), Econometrics: The First Principles A Friendly Introduction
- 3. Kapoor V. k. (2011), Operations Research Problems & Solutions, sultan chand & sons
- 4. Lipschutz (Schaum Series) Theory and Problems of Statistics 5. Loomba Paul : An Introduction to linear programming.

Programme Name: S.Y.B.Sc(Data Science)	Semester:IV				
Course Category: SEC					
Name of the Dept: Science and Technology	Name of the Dept: Science and Technology				
Course Title: Search Engine Optimization					
Course Code: BDS408 Cour	rse Level: 5.0				
Type: Theory					
Course Credit: 02					
Hours Allotted: 30 Hours					
Marks Allotted: 50 Marks					
Course Objectives:					
 Understand the core principles of search engines, including their functionality, crawling, indexing, ranking mechanisms and apply keyword research methods SEO-friendly web development techniques to design and build optimized websites and Analyze website performance using SEO analytics tools and recommend strategies for improvement based on data insights 					
Course Outcomes:					
After the completion of the course, the learners					
CO1: Describe how search engines work and ranking, Use technical tools for keyword resear	CO1: Describe how search engines work and explain the factors that influence webpage				
CO2: Develop websites that are optimized for search engines, considering accessibility, content structuring, and URL hierarchy, Diagnose SEO issues using tools like Google Search Console, identify technical bottlenecks and implement solutions for improved site performance					
Description the course:	Introduction to Search Engines and their				
_	Fundamentals, Keyword Research and				
	SEO-Friendly Web Design, SEO				

Optimization and Analytics

Unit No.	Content	Hours
Ι	Introduction to Search Engines and their Fundamentals	15
	Putting Search Engines in Context and Meeting Them	
	Identifying Search Engine Users, Understanding the Search Engines:	
	They're a Community, Finding the Common Threads among the	
	Engines, Getting to Know the Major Engines, Understanding	
	Metasearch Engines	
	Search Fundamentals	
	Deconstructing Search, The Language of Search, Crawling, The	
	Index, The Search Engine Results Page, Ranking Factors	
	Keyword Research and SEO-Friendly Web Design	
	Keyword Strategy : Researching Client Niche Keywords, Checking	
	Out Seasonal Keyword Trends, The Words and Phrases That Define	
	Business, Internal Resources for Keyword Research, External	
	Resources for Keyword Research, Keyword Valuation, Acting on	
	Keyword Plan, Periodic Keyword Reviews	
II	Developing SEO Friendly Website	15
	Making Site Accessible to Search Engines, Creating Optimal	
	Information Architecture, Root Domains, Subdomains, and	
	Microsites, Optimization of Domain Names/URLs, Keyword	
	Targeting, Content Optimization and Duplicate Issues, Controlling	
	Content with Cookies and Session IDs, Content Delivery and Search	
	Spider Control, Best Practices for Multilingual/Multicountry	
	Targeting, Google's EEAT and YMYL, Domain Changes, Content	
	Moves, and Redesigns	
	SEO Optimization and Analytics	
	Optimizing the Foundations: Meeting the Servers, Health and Fast	
	Servers, Excluding Pages and Sites from the Search Engines,	
	Creating 404 Error Pages, Dirty IPs, Serving Your Site to Different	
	Devices, Selecting Domain Name, Discovering the Types of	
	Redirects,	
	Reconciling www and Non-www URLs, 301 Redirects, Inviting	
	Spiders to Your Site, 302 Hijacks, Handling Secure Server Problems	
	SEO Analytics and Measurement	
	Why Measurement Is Essential in SEO, Analytics Tools for	
	Measuring Search Traffic, Connecting SEO and Conversions,	
	Diagnostic Search Metrics, Free SEO Specific Analytics Tools from	
	Google and Bing, Auditing Websites for SEO Improvements, AI in	
	Search Engine Total House	20
	Total Hours	30

Books and References:

- 1. Eric Enge, Stephen Spencer, Jessie Stricchiola, "The Art of SEO", 4th Edition, O'Reilly Media Inc, September 2023
- 2. Bruce Clay, Kristopher B. Jones, "Search Engine Optimization All-in-One For Dummies", 4th Edition, For Dummies, February 2022 (9 Books in One)

Thane (W)

Programme Name: S.Y.B.Sc(Data Sci	ence)	Semester:IV
Course Category: SEC		
Name of the Dept: Science and Techr	ology	
Course Title: Computer Graphics		
Course Code: BDC408	Course Level:5.0	
Type: Theory		
Course Credit: 02		
Hours Allotted: 30 Hours		
Marks Allotted: 50 Marks		

Course Objectives:

- 1. The course introduces the basic concepts of computer graphics & animations.
- 2. It provides the necessary theoretical background and demonstrates the application of computer science to graphics.

Course Outcomes:

After the completion of the course, the learners would be able to:

- CO1. Understand the basics of computer graphics, different graphics systems and applications of computer graphics, various scan conversion algorithms, Use of geometric transformations on graphics object.
- CO2 . Understand the basics of 3D viewing, hidden surface removal algorithms, basics of curve representations. (the core concepts of computer animations & image manipulations)

Description of the course:	This course introduces fundamental concepts and		
	techniques in computer graphics, including 2D and 3D		
	transformations, scan conversion algorithms, and visible-		
	surface determination. Students will learn about key		
	algorithms like DDA, Bresenham's, and Midpoint		
	methods, as well as advanced topics such as curve and		
	surface representation, computer animation, and image		
	manipulation. The course also covers the principles of 3D		
	viewing, including the Canonical View Volume and		
	techniques like the z-buffer and painter's algorithms for		
	efficient rendering. Practical applications in animation and		
	image processing, including compression and		
	enhancement, will be explored.		

Unit No.	Content	Hours	
Ι	Introduction to Computer Graphics:	15	
	Overview of Computer Graphics, Computer Graphics Application		
	and		
	Software. Active and Passive Graphics Devices, Raster-Scan and		
	Random-Scan Displays .		
	Scan conversion :		
	Digital Differential Analyzer (DDA) algorithm,		
	Bresenhams' Line drawing algorithm. Bresenhams' method of Circle		
	drawing, Midpoint Circle Algorithm, Midpoint Ellipse Algorithm.		
	Two-Dimensional Transformations:		
	Transformations and Matrices, Transformation Conventions, 2D		
	Transformations, Homogeneous Coordinates and Matrix		
	Representation of 2D Transformations, Translations and		
	Homogeneous		
	Coordinates, Rotation, Reflection, Scaling, Combined		
	Transformation,		
	Rotation About an Arbitrary Point.		
II	Viewing in 3D:	15	
	Stages in 3D viewing, Canonical View Volume (CVV), Specifying		
	an		
	Arbitrary 3D View, Examples of 3D Viewing.		
	Visible-Surface Determination:		
	Techniques for efficient Visible-Surface Algorithms, Categories of		
	algorithms, Back face removal, The z-Buffer Algorithm, Scan-line		
	method, Painter's algorithms (depth sorting).		
	Computer Animation:		
	Principles of Animation, Key framing, Deformations, Character		
	Animation, Physics-Based Animation, Procedural Techniques,		
	Groups of Objects.		
	Image Manipulation and Storage: What is an Image? Digital image file formats. Image compression		
	What is an Image? Digital image file formats, Image compression standard – JPEG, Image Processing - Digital image enhancement,		
	contrast stretching, Histogram Equalization, smoothing and median		
	Filtering.		
	Total Hours	30	
		1 - 0	

Books and References:

Sr. No	Title	Author/s	Publisher	Edition	Year
1.	Principles of Interactive computer Graphics	William M. Newman and Robert F. Sproull	ТМН	2 nd	
2.	Computer Graphics - Principles and Practice	J. D. Foley, A. Van Dam, S. K. Feiner and J. F. Hughes	Pearson	2 nd	
3.	Fundamentals of Computer Graphics	Steve Marschner, Peter Shirley	CRC press	4 th	2016

Programme Name: S.Y. B.Sc. (Data S	cience)	Semester:IV
Course Category: CC		
Name of the Department: Sociology		
Course Title: National Integration and	nd Communal Harmony	
Course Code: BDN411	Course Level: 5	
Type: Theory / Practical		
Course Credit: 2 credits		
Hours Allotted: 30 Hours		
Marks Allotted: 50 Marks		

Course Objectives:

- 1. To develop an understanding of the significance of National Integration and Communal Harmony.
- 2. To enable students to appreciate the role of youth in fostering unity and peace in society.

Course Outcomes:

CO1. Understand the principles of National Integration and Communal Harmony. CO2. Develop leadership and teamwork skills through NSS activities focused on unity and peace.

Introduction: National Integration and Communal Harmony are essential for a diverse country like India. This course introduces students to the importance of unity in diversity and the role of NSS in promoting peace, social justice, and inclusive development. Students will engage in activities and discussions to strengthen their commitment to harmony and national unity.

Relevance and Usefulness: Given the challenges of communal tensions and social divisions, fostering National Integration is crucial. This course empowers students with the knowledge and skills to actively participate in building a more inclusive and peaceful society.

Interest and Connection with Other Courses: This course complements subjects such as Sociology, Political Science, and Social Work, reinforcing the importance of civic responsibility, human rights, and peacebuilding in a democratic society.

Unit No.	Content	Hours
I	UNIT I: Concept and Importance of National Integration and Communal Harmony A. Meaning and Significance of National Integration B. Factors Affecting National Integration in India C. Challenges to Communal Harmony	15
II	UNIT II: Role of NSS in Promoting National Integration and Communal Harmony A. NSS and Its Role in Community Development B. Social Service as a Tool for Unity C. Case Studies of Successful NSS Interventions for National Integration	15
	Total Hours	30

References:

- National Service Scheme Manual (Revised) 2006, Government of India, Ministry of Youth Affairs and Sports, New Delhi.
- 2. University of Mumbai National Service Scheme Manual 2009.
- 3. http://nss.nic.in
- 4. https://www.rccmindore.com/wp-content/uploads/2023/04/NSS-Notes-II.pdf

Sheth T. J. Education Society's

Sheth N.K.T.T College of Commerce and

Sheth J.T.T College of Arts, Thane (W)

(Autonomous)

Programme Name: S.Y. B.Sc. (Data Science)	Semester: IV		
Course Category/Vertical: Co-Curricular (CC)			
Name of the Dept: Psychology			
Course Title: Yoga			
Course Code: BDY411	Course Level: 5.0		
Type: Theory / Practical			
Course Credit: 2 credits			
Hours Allotted: 30 Hours			
Marks Allotted: 50 Marks			
Learning Objectives:			
 To impart to the students the knowledge of teachings and philosophy of yoga tradition. To provide the knowledge of various Yoga therapy practices like asana (posture), pranayama (voluntarily regulated breathing techniques). 			
Course Outcomes: CO1. Students will be able to understand the basic principles and applications of Yoga. CO2. Students will be able to use the Practical knowledge in their day to day life.			
Description the course:	Yoga practices will be important for the upcoming lifestyle hence students can seek a career in the same. Students will understand the importance of yoga in life. Students will be having practical exposure. Hence, practicing yoga will help students to maintain their health.		

Unit No.	Content	Hours
I	Theory of Yoga	15
	 A) Yogic Sanchalan (Yogic Movements), Kapalbhati (Cleansing Breath Technique), Suryanamaskar (Sun Salutation) B) Anulom-Vilom (Alternate Nostril Breathing), Dirgha Shwasan (Deep Breathing), Bhramari (Humming Bee Breath) 	
II	Practical	15
	 A) Vajrasana (Thunderbolt Pose), Paschimottanasana (Seated Forward Bend), Parivritta Janushirasana (Revolved Head-to-Knee Pose), Vakrasana (Twisting Pose), Marjarasana (Cat Pose), Naukasana (Boat Pose) B) Shalabhasana (Locust Pose), Dronasana (Warrior Boat Pose), Pavanmuktasana (Wind-Relieving Pose), Bramha Mudra (Sacred Gesture for Neck Strength), Utthita Dwipadasana (Raised Two-Leg Pose), Netra Sanchalan - 1 (Eye Movement Exercise - 1), Netra Sanchalan - 2 (Eye Movement Exercise - 2) 	
	Total Hours	30

References:

- 1. G. V Kadam Yoga Life Sutra, Girish Vasant Kadam (2012)
- 2. ajayoga Swami Vivekananda Ramakrishna Ashrama Publications
- 3. C.D. Sharma: Critical Survey of Indian Philosophy, Motilal Banarsidass Publications 2003

Scheme of Examination

Course with Credit	External Examination	Internal Examination	Total
Credit 4	60 marks	40 marks	100 marks
Credit 2	30 marks	20 marks	50 marks

Internal Examination Structure(Theory)

Internal examination	40 marks	20 marks
Project Presentation/Case Study /Quiz/Group Discussion	10 marks	5 marks
Assignment /Active class Participation/Attendance	10 marks	5 marks
Class test	20 marks	10 marks
Total	40 marks	20 marks

Structure for Class Test

For 10 marks	
Q1. Fill in the blank (5 Marks)	10 Marks
a.	
b.	
c.	
d.	
e. Q2. Answer in one or two lines (5 Marks)	
a.	
b.	
c. d.	
e.	

External Examination (For 60 Marks)

Q. No.	External	Marks: 60
Q .1	Answer the following questions (Any 3)	15 Marks
(From Module 1)	A	
	В	
	С	
	D	
	E	
	F	
Q. 2	Answer the following questions (Any 3)	15 Marks
(From Module 2)	A	
	В	
	C	
	D	
	E	
	F	
Q. 3	Answer the following questions (Any 3)	15 Marks
(From Module 3)	A	
	В	
	С	
	D	
	E	
	F	
Q. 4	Answer the following questions (Any 3)	15 Marks
(From Module 4)	A	
	В	
	С	
	D	
	E	
	F	

External Examination (For 30 Marks)

Q. No.	External	Marks: 30
Q .1	Answer the following questions (Any 3)	15 Marks
(From Module 1)	A	
	В	
	С	
	D	
	E	
	F	
Q. 2	Answer the following questions (Any 3)	15 Marks
(From Module 2)	A	
	В	
	C	
	D	

	E	
	F	

Practical Exam Evaluation: 50 marks

A Certified copy journal is essential to appear for the practical examination.

1	Practical Question 1	20
2	Practical Question 1	20
3	Journal	5
4	Viva Voce	5

OR

1	Practical Question 1	40
2	Journal	5
3	Viva Voce	5